

Information Design in Collective Decision Games

SEHER GUPTA

New York University

NMI Workshop, ISI Delhi, August 1st 2015

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Consider a group of decision makers
 - Each votes on one of two alternatives
 - Outcome is decided by a voting rule

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- Consider a group of decision makers
 - Each votes on one of two alternatives
 - Outcome is decided by a voting rule
- Example Board members of a company

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Consider a group of decision makers
 - Each votes on one of two alternatives
 - Outcome is decided by a voting rule
- Example Board members of a company
- Optimal choice depends on an unknown state of the world

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Consider a group of decision makers
 - Each votes on one of two alternatives
 - Outcome is decided by a voting rule
- Example Board members of a company
- Optimal choice depends on an unknown state of the world
- Information designer
 - payoff depends on the outcome
 - designs information structure to manipulate beliefs

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Consider a group of decision makers
 - Each votes on one of two alternatives
 - Outcome is decided by a voting rule
- Example Board members of a company
- Optimal choice depends on an unknown state of the world
- Information designer
 - payoff depends on the outcome
 - designs information structure to manipulate beliefs

(ロ) (型) (E) (E) (E) (O)

- Consider a group of decision makers
 - Each votes on one of two alternatives
 - Outcome is decided by a voting rule
- Example Board members of a company
- Optimal choice depends on an unknown state of the world
- Information designer
 - payoff depends on the outcome
 - designs information structure to manipulate beliefs
- Question: What is the optimal information structure?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Whom to persuade and How?

- Optimal Information Structure depends on:
 - 1. Set of information structures available to the designer:
 - Public Signals
 - Private Independent Signals
 - Arbitrarily Correlated Signals
 - 2. The Voting rule

うして ふゆう ふほう ふほう うらつ

Whom to persuade and How?

- Optimal Information Structure depends on:
 - 1. Set of information structures available to the designer:
 - Public Signals
 - Private Independent Signals
 - Arbitrarily Correlated Signals
 - 2. The Voting rule
- Compare expected payoffs in equilibrium to analyze:
 - Which player will the designer target?
 - Will she include the most difficult to convince?
 - Which voting rule is least vulnerable to influence?

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- Two states of the world: $\Theta = \{\theta_0, \theta_1\}$
- Two alternatives: $\mathcal{X} = \{x_0, x_1\}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Two states of the world: $\Theta = \{\theta_0, \theta_1\}$
- Two alternatives: $\mathcal{X} = \{x_0, x_1\}$
- Committee & Designer share a common prior: $\psi \in \Delta(\Theta)$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Two states of the world: $\Theta = \{\theta_0, \theta_1\}$
- Two alternatives: $\mathcal{X} = \{x_0, x_1\}$
- Committee & Designer share a common prior: $\psi \in \Delta(\Theta)$
- A voting rule is given. (# of votes required)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Two states of the world: $\Theta = \{\theta_0, \theta_1\}$
- Two alternatives: $\mathcal{X} = \{x_0, x_1\}$
- Committee & Designer share a common prior: $\psi \in \Delta(\Theta)$
- A voting rule is given. (# of votes required)
- Designer chooses an information structure

(ロ) (型) (E) (E) (E) (O)

- Two states of the world: $\Theta = \{\theta_0, \theta_1\}$
- Two alternatives: $\mathcal{X} = \{x_0, x_1\}$
- Committee & Designer share a common prior: $\psi \in \Delta(\Theta)$
- A voting rule is given. (# of votes required)
- Designer chooses an information structure
- State of the world is realized

うして ふゆう ふほう ふほう うらつ

- Two states of the world: $\Theta = \{\theta_0, \theta_1\}$
- Two alternatives: $\mathcal{X} = \{x_0, x_1\}$
- Committee & Designer share a common prior: $\psi \in \Delta(\Theta)$
- A voting rule is given. (# of votes required)
- Designer chooses an information structure
- State of the world is realized
- Players observe the signal; update beliefs
- They play a BNE of the induced game.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The Committee

- Each member wants to match state & alternative
- *Differ* in cost of mismatch:

$$u_i(x,\theta) = \begin{cases} -q_i & \text{if } x = x_1, \theta = \theta_0 \\ -(1-q_i) & \text{if } x = x_0, \theta = \theta_1 \\ 0 & \text{otherwise} \end{cases}$$

- $q_i \in (0, 1)$ is called the "threshold of doubt".
- Higher $q_i \Rightarrow$ more difficult to convince
- *i* votes for x_1 if belief on $\theta_1 > q_i$

The Information Designer

- Always wants the outcome to be x_1
- Designs *information structure* $\{T, \pi\}$
 - 1. Finite Realization Space: T
 - 2. Conditional Distribution Functions: $\pi: \Theta \to \Delta(\mathcal{T})$
- Only restriction on signals *Bayes' Consistency*
- Solves the problem:

 $\begin{array}{ll} \max & \Pr(\textit{outcome} = x_1) \\ \text{Subject To} & \textit{Incentive Constraints} \end{array}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ や ・

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- Three Players: $q_1 = 0.4, q_2 = 0.5, q_3 = 0.6$
- Common Prior: $\psi_1 = 0.3$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Three Players: $q_1 = 0.4, q_2 = 0.5, q_3 = 0.6$
- Common Prior: $\psi_1 = 0.3$
- Without any information:
 - All players vote for x₀
 - Designer's payoff = 0

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- Three Players: $q_1 = 0.4, q_2 = 0.5, q_3 = 0.6$
- Common Prior: $\psi_1 = 0.3$
- Without any information:
 - All players vote for x₀
 - Designer's payoff = 0
- Full Information:
 - Players match state with alternative
 - Designer's expected payoff = 0.3

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- Three Players: $q_1 = 0.4, q_2 = 0.5, q_3 = 0.6$
- Common Prior: $\psi_1 = 0.3$
- Without any information:
 - All players vote for x₀
 - Designer's payoff = 0
- Full Information:
 - Players match state with alternative
 - Designer's expected payoff = 0.3
- Question: Can the designer do better?

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Can the Designer Do Better?

Table : Designer's Expected Payoff

Information Structure	Majority Rule	Unanimity
No Information	0	0
Full Information	0.3	0.3
Public Signal		
Private Independent		
Correlated		

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Public Signal

- Same signal = same posterior
- But behavior *differs* because of *different* q_i
- Reduces to one player problem
- q₁ < q₂ < q₃⇒ Designer makes the marginal player indifferent.

Optimal Information Structure

Proposition

Given a voting rule, the optimal information structure of the designer, with a public signal, is characterized by $\{T, \pi\}$ with $T = \{t_0, t_1\}$ and $\pi : \Theta \to \Delta(T)$ is defined as:

$$egin{array}{ll} \pi(t_0| heta_0) &= p_k & \textit{and} & \pi(t_0| heta_1) &= 0 \ \pi(t_1| heta_0) &= 1 - p_k & \textit{and} & \pi(t_1| heta_1) &= 1 \ 1 - p_k &= & rac{\psi_1}{\psi_0} \left(rac{1 - q_k}{q_k}
ight) \end{array}$$

where q_k is the threshold of doubt of k-th voter, and k is the number votes required for x_1 be chosen as the outcome.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

All in a Day's Work

Table : Designer's Expected Payoff

Information Structure	Majority Rule	Unanimity
No Information	0	0
Full Information	0.3	0.3
Public Signal	0.6	0.5
Private Independent		
Correlated		

うして ふゆう ふほう ふほう うらつ

Private Information

- Signals are private, conditionally independent, identically distributed.
- No longer a one player problem!
- Two effects:
 - 1. Signals diverge bad for designer
 - 2. Strategic Voting (potentially) good for designer
- Being *pivotal* carries additional information.
- "Potentially" good can infer a bad signal
- Is there some way to make strategic voting good?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Go for the Easiest!

- To kill the bad signals: convert all rules to unanimity
- Designer targets the marginal player (easiest bunch to convince)

Go for the Easiest!

- To kill the bad signals: convert all rules to unanimity
- Designer targets the marginal player (easiest bunch to convince)

Table : Designer's Expected Payoff

•	Information Structure	Majority Rule	Unanimity
	No Information	0	0
	Full Information	0.3	0.3
	Public Signal	0.6	0.5
	Private Signal	0.6	0.5

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Designer as Mediator

- Designer can send arbitrarily correlated signals
- Think of the designer as making "recommendations"
- Optimizing over: distributions of action profiles

$$\sigma: \Theta \to \Delta(\mathcal{A})$$

• Solution concept - Bayes Correlated Equilibrium

うして ふゆう ふほう ふほう うらつ

Main Results

Theorem (1)

Under non-unanimous voting rules, using a public signal is sub-optimal for the designer.

- There exist information structure with private correlated signals that give the designer a higher expected payoff.
- Designer does not target the marginal player!
- Calls upon the more-difficult-to-convince in the good state.

Light, Shade and Perspective...

Figure : Illustrative Example

Light, Shade and Perspective!

Figure : Illustrative Example

Model

Results

・ロト ・個ト ・ヨト ・ヨト

э

Conclusion

Main Results

Theorem (2)

Under the unanimity rule, the optimal information structure of the designer is such that:

$$\sigma(x_1,...,x_1| heta_1) = 1$$
 and $\sigma(x_1,...,x_1| heta_0) = \left(rac{\psi_1}{\psi_0}
ight) \left(rac{1-q_n}{q_n}
ight)$

And the designer's expected utility is $\frac{\psi_1}{q_n}$.

Model

Result

Conclusion

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

United We Stand.

Table : Designer's Expected Payoff

Information Structure	Majority Rule	Unanimity
No Information	0	0
Full Information	0.3	0.3
Public Signal	0.6	0.5
Private Signal	0.6	0.5
Correlated Signals	0.6462	0.5

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

That's all Folks!

- Two main results:
 - 1. Public Information is suboptimal for designer under non-unanimous voting rule
 - 2. Unanimity is least vulnerable to influence.
- Two main contributions:
 - 1. Bayesian Persuasion with Strategic interaction
 - 2. Private and Correlated Signals
- Two closest papers:
 - 1. Wang (2015)
 - 2. Alonso-Camara (2015)